The *complete* sequence of a human genome

Adam M. Phillippy

NCI BTEP September 16, 2021

I heard it was finished 20 years ago?

No!

And what's missing is underappreciated

• "In the April 2003 version, there are less than 400 gaps and 99 percent of the genome is finished" (genome.gov)

8% is missing or incorrect

- Centromeres and telomeres
- Segmentally duplicated genes
- Tandem gene arrays (e.g. rDNAs)
- And an unknown number of errors...

No!

 "In the Ap and 99 pe

8% is miss

- Centrome
- Segmenta
- Tandem g
- And an un

When Human Genome Project researchers announced they had successfully completed sequencing the human genome, it was actually only about 92% complete. Now, And what's researchers have finally got that last 8%! bit.ly/3BvpwUQ

eciated ss than 400 gaps hed" (genome.gov)

Finishing the human genome

Why does it matter?

Variation in these regions is unexplored Functional studies need sequence Reference gaps lead to artifacts We don't know what we don't know...

Why has it taken so long?

- Technological limitations
- Genomic repeats

40 years of sequencing & assembly

"With modern fast sequencing techniques^{1,2} and suitable computer programs it is now possible to sequence whole genomes without the need of restriction maps."

"If the overlap is of sufficient length to distinguish it from being a repeat in the sequence the two sequences must be contiguous."

Rodger Staden, 1979

A new era of sequencing

Nanopore ultra-long sequencing

Nanopore UL

- >100 kb reads, up to 1 Mb
- 95% (Q13) read quality
- 99.9% (Q30+) assembly quality

Pros

- Outstanding length
- Reads span repeats

Cons

Lower throughput and quality

Nanopore sequencing and assembly of a human genome with ultra-long reads. Jain et al. *Nature Biotechnology* (2018)

Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Shafin et al. *Nature Biotechnology* (2020)

Circular consensus sequencing

PacBio HiFi

- 20 kb reads
- 99.9% (Q30) read quality
- 99.9999% (Q60+) assembly quality

Pros

- Outstanding accuracy
- Reads distinguish repeats

Cons

Limited length and coverage

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Wenger et al. *Nature Biotechnology* (2019)

HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Nurk et al. *Genome Research* (2020)

"Sufficient length" depends on accuracy

- Where do the reads originate?
 - 1. Illumina (short + accurate):
 - 2. CLR (midsize + noisy):
 - 3. Nanopore (long + noisy):
 - 4. HiFi (midsize + accurate):

Finishing the human genome

Let's finish a human genome (2018)

Karen Miga, UCSC

The Telomere-to-Telomere (T2T) consortium is an open, community-based effort to generate the first complete assembly of a human genome.

Strategy: sequence the heck out of it

HGP/Sanger assembly (2001)

ref28 / hg10 : N50 0.5 Mbp

T2T/ONT assembly (2019)

Sergey Koren & Shelise Brooks, NHGRI

Nanopore backbone (2019)

Complete chromosomes X and 8!

Glennis Logsdon, UW

nature

Explore our content > Journal information >

nature > articles > article

Article Open Access | Published: 14 July 2020

Telomere-to-telomere assembly of a complete human X chromosome

Karen H. Miga ☑, Sergey Koren, [...] Adam M. Phillippy ☑

Nature 585, 79–84(2020) | Cite this article

nature

Journal information > Publish with us > Explore content >

nature > articles > article

Article | Open Access | Published: 07 April 2021

The structure, function and evolution of a complete human chromosome 8

Glennis A. Logsdon, Mitchell R. Vollger, [...]Evan E. Eichler ☑

Nature 593, 101-107 (2021) | Cite this article

Can we speed this up?

A graph-first approach

Sergey Nurk, NHGRI

- 1. HiFi string graph
 - Homopolymer compression (CAAAAT → CAT)
 - Read cleaning and correction
 - String graph from long perfect overlaps
- 2. Hamiltonian walks for easy tangles
- 3. Nanopore walks for hard tangles
- 4. Use only HiFi for consensus (decompression)

CHM13 HiFi assembly graph (2020)

Mikko Rautiainen, NHGRI

One year later...

The complete sequence of a human genome

- GRCh38.p13 (no alts)
 - 24 chromosomes
 - 42 unlocalized
 - 127 unplaced
 - 2,922,212,712 bp
 - 130.6 Mbp of gaps
 - Uncertain quality

- CHM13v1.1 (no hets)
 - 23 chromosomes (no Y)
 - 0 unlocalized
 - 0 unplaced
 - 3,054,832,041 bp
 - No gaps
 - ~Q70, no known SVs

Estimated CHM13 genome size of **3.055 Gbp** >**200 Mbp** of *new* sequence vs. GRCh38

2,226 new genes (115 predicted protein coding)

CHM13 assembly validation

Arang Rhie, NHGRI

The acrocentrics revealed

- 66.1 Mbp of new sequence
- Dynamic sources of segmental duplication
- Median inter-chromosomal identity 98.7%
- No unique 5 kbp windows at 80% identity
- 96% can be found elsewhere in the genome

Tamara Potapova, Stowers

The acrocentrics revealed

Many new segmental duplications

Mitchell Vollger, UW

A more accurate reference sequence

Aganezov et al.

Newly resolved paralogs fix old ones

Newly resolved paralogs fix old ones

Compared to GRCh38, CHM13....

- Is a complete genome
- Represents a natural haplotype
- Corrects systematic errors in GRCh38 (SVs, dups)
- Improves both long and short read mapping
- Eliminates >10k false variants per sample*
- Identifies >2M new variants in 1000G datasets
- Adds ~2,000 new genes (~100 protein coding)

T2T bioRxiv preprints

The complete sequence of a human genome

Nurk, Koren, Rhie, Rautiainen, Eicher, Miga,, Phillippy, et al.

Complete genomic and epigenetic <u>maps of human centromeres</u> Altemose, Alexandrov, Miga, *et al.*

<u>Segmental duplications</u> and their variation in a complete human genome Vollger, Eichler, et al.

Epigenetic patterns in a complete human genome Gershman, Miga, Timp, et al.

A complete <u>reference genome</u> improves analysis of human genetic variation Aganezov, Yan, Soto, Kirsche, Zarate, McCoy, Dennis, Zook, Schatz, *et al.*

The transcriptional and epigenetic state of <u>human repeat elements</u> Hoyt, O'Neill, *et al.*

Summary thoughts

The human genome is finally complete

- The most bases ever added to the genome
- CHM13 is a better reference for mapping
- More variants within repeats than expected
- New genes and structures uncovered

PacBio HiFi is a powerful new data type

- Accurate, yet continuous, assembly graphs
- Nanopore and/or Hi-C for gaps, tangles, and phasing

What is the reference?

- GRC if you must
 - 20 years of accumulated resources
- T2T for everything else
 - Improved accuracy and reduced bias
 - Only option for 8% of the genome
- Pangenome for the future
 - Complete catalog of human genomic variation

What's next for the T2T?

- Y chromosome
 - Coming (very) soon!

Human Pangenome Reference Consortium

- 250+ diploid HiFi genomes
- Reference pangenome data structures
- UCSC, UW, WashU, Rockefeller, NHGRI...
- https://github.com/human-pangenomics/

ModT2T

Zebrafish, fly, mouse, primates...

HGP started it, T2T finished it

